Optimizing Training Population Data and Validation of Genomic Selection for Economic Traits in Soft Winter Wheat
نویسندگان
چکیده
Genomic selection (GS) is a breeding tool that estimates breeding values (GEBVs) of individuals based solely on marker data by using a model built using phenotypic and marker data from a training population (TP). The effectiveness of GS increases as the correlation of GEBVs and phenotypes (accuracy) increases. Using phenotypic and genotypic data from a TP of 470 soft winter wheat lines, we assessed the accuracy of GS for grain yield, Fusarium Head Blight (FHB) resistance, softness equivalence (SE), and flour yield (FY). Four TP data sampling schemes were tested: (1) use all TP data, (2) use subsets of TP lines with low genotype-by-environment interaction, (3) use subsets of markers significantly associated with quantitative trait loci (QTL), and (4) a combination of 2 and 3. We also correlated the phenotypes of relatives of the TP to their GEBVs calculated from TP data. The GS accuracy within the TP using all TP data ranged from 0.35 (FHB) to 0.62 (FY). On average, the accuracy of GS from using subsets of data increased by 54% relative to using all TP data. Using subsets of markers selected for significant association with the target trait had the greatest impact on GS accuracy. Between-environment prediction accuracy was also increased by using data subsets. The accuracy of GS when predicting the phenotypes of TP relatives ranged from 0.00 to 0.85. These results suggest that GS could be useful for these traits and GS accuracy can be greatly improved by using subsets of TP data.
منابع مشابه
Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat
Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial...
متن کاملPredicting Hybrid Performances for Quality Traits through Genomic-Assisted Approaches in Central European Wheat
Bread-making quality traits are central targets for wheat breeding. The objectives of our study were to (1) examine the presence of major effect QTLs for quality traits in a Central European elite wheat population, (2) explore the optimal strategy for predicting the hybrid performance for wheat quality traits, and (3) investigate the effects of marker density and the composition and size of the...
متن کاملUnlocking Diversity in Germplasm Collections via Genomic Selection: A Case Study Based on Quantitative Adult Plant Resistance to Stripe Rust in Spring Wheat.
Harnessing diversity from germplasm collections is more feasible today because of the development of lower-cost and higher-throughput genotyping methods. However, the cost of phenotyping is still generally high, so efficient methods of sampling and exploiting useful diversity are needed. Genomic selection (GS) has the potential to enhance the use of desirable genetic variation in germplasm coll...
متن کاملUsing Genetic Distance to Infer the Accuracy of Genomic Prediction
The prediction of phenotypic traits using high-density genomic data has many applications such as the selection of plants and animals of commercial interest; and it is expected to play an increasing role in medical diagnostics. Statistical models used for this task are usually tested using cross-validation, which implicitly assumes that new individuals (whose phenotypes we would like to predict...
متن کاملGplusE: beyond genomic selection
GplusE is a strategy for genomic selection in which the accuracy of assessment in the reference population for a primary trait such as yield is increased by the incorporation of data from high- throughput field phenotyping platforms. This increase in precision comes from both exploiting genetic relationships between traits and reducing the effect of environmental influences upon them. We descri...
متن کامل